Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508315

ABSTRACT

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Subject(s)
Interferon Regulatory Factor-7 , NF-kappa B , Animals , Humans , Mice , HEK293 Cells , Inflammation/genetics , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Sendai virus/physiology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology , Virus Replication , Mutation , Gene Expression Regulation/genetics , Murine hepatitis virus/physiology , Coronavirus Infections/immunology , Respirovirus Infections/immunology
2.
mBio ; 14(5): e0061123, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37712680

ABSTRACT

IMPORTANCE: Virus infection triggers induction of interferon (IFN)-stimulated genes (ISGs), which ironically inhibit viruses themselves. We identified Tudor domain-containing 7 (TDRD7) as a novel antiviral ISG, which inhibits viral replication by interfering with autophagy pathway. Here, we present a molecular basis for autophagy inhibitory function of TDRD7. TDRD7 interacted with adenosine monophosphate (AMP)-activated protein kinase (AMPK), the kinase that initiates autophagy, to inhibit its activation. We identified domains required for the interaction; deleting AMPK-interacting domain blocked antiAMPK and antiviral activities of TDRD7. We used primary cells and mice to evaluate the TDRD7-AMPK antiviral pathway. TDRD7-deficient primary mouse cells exhibited enhanced AMPK activation and viral replication. Finally, TDRD7 knockout mice showed increased susceptibility to respiratory virus infection. Therefore, our study revealed a new antiviral pathway of IFN and its contribution to host response. Our results have therapeutic potential; a TDRD7-derived peptide may be an effective AMPK inhibitor with application as antiviral agent.


Subject(s)
Interferons , Virus Diseases , Animals , Mice , Interferons/metabolism , AMP-Activated Protein Kinases/metabolism , Virus Replication/genetics , Antiviral Agents/pharmacology , Immunity, Innate , Ribonucleoproteins/genetics
3.
Viruses ; 15(7)2023 07 20.
Article in English | MEDLINE | ID: mdl-37515265

ABSTRACT

Inflammatory responses during virus infection differentially impact the host. Managing inflammatory responses is essential in controlling viral infection and related diseases. Recently, we identified a cellular anti-inflammatory mechanism, RIKA (Repression of IRF3-mediated inhibition of NF-κB activity), which controls viral inflammation and pathogenesis. The RIKA function of IRF3 may be explored further in other inflammatory diseases beyond viral infection.


Subject(s)
Signal Transduction , Virus Diseases , Humans , NF-kappa B/metabolism , Inflammation , Immunity, Innate
4.
Autophagy Rep ; 1(1): 83-87, 2022.
Article in English | MEDLINE | ID: mdl-36507301

ABSTRACT

IRF3 (interferon regulatory factor 3) is a critical component of the antiviral innate immune response. IRF3 deficiency causes detrimental effects to the host during virus infection. Dysregulation of IRF3 functions is associated with viral, inflammatory, and hepatic diseases. Both transcriptional and pro-apoptotic activities of IRF3 are involved in the exacerbated inflammation and apoptosis in liver injury induced by ethanol and high-fat diets. Therefore, regulation of IRF3 activities has consequences, and it is a potential therapeutic target for infectious and inflammatory diseases. We recently revealed that IRF3 is degraded by a small molecule, auranofin, by activating the cellular macroautophagy/autophagy pathway. Autophagy is a catabolic pathway that contributes to cellular homeostasis and antiviral host defense. Degradation of IRF3 by autophagy may be a novel strategy used by the viruses to their benefit. In addition, IRF3 functions are harmful in other diseases, including liver injury and bacterial infection. A better understanding of the role of autophagy in regulating IRF3 functions has significant implications in developing therapeutic strategies. Therefore, autophagy provides checks and balances in the innate immune response.

5.
Proc Natl Acad Sci U S A ; 119(37): e2121385119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067309

ABSTRACT

Interferon (IFN) regulatory factor 3 (IRF3) is a transcription factor activated by phosphorylation in the cytoplasm of a virus-infected cell; by translocating to the nucleus, it induces transcription of IFN-ß and other antiviral genes. We have previously reported IRF3 can also be activated, as a proapoptotic factor, by its linear polyubiquitination mediated by the RIG-I pathway. Both transcriptional and apoptotic functions of IRF3 contribute to its antiviral effect. Here, we report a nontranscriptional function of IRF3, namely, the repression of IRF3-mediated NF-κB activity (RIKA), which attenuated viral activation of NF-κB and the resultant inflammatory gene induction. In Irf3-/- mice, consequently, Sendai virus infection caused enhanced inflammation in the lungs. Mechanistically, RIKA was mediated by the direct binding of IRF3 to the p65 subunit of NF-κB in the cytoplasm, which prevented its nuclear import. A mutant IRF3 defective in both the transcriptional and the apoptotic activities was active in RIKA and inhibited virus replication. Our results demonstrated IRF3 deployed a three-pronged attack on virus replication and the accompanying inflammation.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-3 , NF-kappa B , Pneumonia, Viral , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Gene Expression , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/genetics , Mice , NF-kappa B/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Sendai virus
6.
Viruses ; 14(9)2022 09 13.
Article in English | MEDLINE | ID: mdl-36146835

ABSTRACT

Wastewater-based epidemiology (WBE) is a popular tool for the early indication of community spread of infectious diseases. WBE emerged as an effective tool during the COVID-19 pandemic and has provided meaningful information to minimize the spread of infection. Here, we present a combination of analyses using the correlation of viral gene copies with clinical cases, sequencing of wastewater-derived RNA for the viral mutants, and correlative analyses of the viral gene copies with the bacterial biomarkers. Our study provides a unique platform for potentially using the WBE-derived results to predict the spread of COVID-19 and the emergence of new variants of concern. Further, we observed a strong correlation between the presence of SARS-CoV-2 and changes in the microbial community of wastewater, particularly the significant changes in bacterial genera belonging to the families of Lachnospiraceae and Actinomycetaceae. Our study shows that microbial biomarkers could be utilized as prediction tools for future infectious disease surveillance and outbreak responses. Overall, our comprehensive analyses of viral spread, variants, and novel bacterial biomarkers will add significantly to the growing body of literature on WBE and COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , COVID-19/epidemiology , Humans , Pandemics , RNA , RNA, Viral , SARS-CoV-2/genetics , Wastewater
7.
Immuno ; 2(1): 153-169, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35252965

ABSTRACT

Virus-infected cells trigger a robust innate immune response and facilitate virus replication. Here, we review the role of autophagy in virus infection, focusing on both pro-viral and anti-viral host responses using a select group of viruses. Autophagy is a cellular degradation pathway operated at the basal level to maintain homeostasis and is induced by external stimuli for specific functions. The degradative function of autophagy is considered a cellular anti-viral immune response. However, autophagy is a double-edged sword in viral infection; viruses often benefit from it, and the infected cells can also use it to inhibit viral replication. In addition to viral regulation, autophagy pathway proteins also function in autophagy-independent manners to regulate immune responses. Since viruses have co-evolved with hosts, they have developed ways to evade the anti-viral autophagic responses of the cells. Some of these mechanisms are also covered in our review. Lastly, we conclude with the thought that autophagy can be targeted for therapeutic interventions against viral diseases.

8.
J Biol Chem ; 297(5): 101274, 2021 11.
Article in English | MEDLINE | ID: mdl-34619149

ABSTRACT

The ubiquitously expressed transcription factor interferon (IFN) regulatory factor 3 (IRF3) is critical for the induction of antiviral genes, e.g., type-I IFN. In addition to its transcriptional function, IRF3 also activates a nontranscriptional, proapoptotic signaling pathway. While the proapoptotic function of IRF3 protects against viral infections, it is also involved in harmful immune responses that trigger hepatocyte cell death and promote liver disease. Thus, we hypothesized that a small-molecule inhibitor of the proapoptotic activity of IRF3 could alleviate fatty-acid-induced hepatocyte cell death. We conducted a high-throughput screen, which identified auranofin as a small-molecule inhibitor of the proapoptotic activity of IRF3. In addition to the nontranscriptional apoptotic pathway, auranofin also inhibited the transcriptional activity of IRF3. Using biochemical and genetic tools in human and mouse cells, we uncovered a novel mechanism of action for auranofin, in which it induces cellular autophagy to degrade IRF3 protein, thereby suppressing IRF3 functions. Autophagy-deficient cells were unable to degrade IRF3 upon auranofin treatment, suggesting that the autophagic degradation of IRF3 is a novel approach to regulate IRF3 activities. Using a physiologically relevant in vitro model, we demonstrated that auranofin inhibited fatty-acid-induced apoptotic cell death of hepatocytes. In summary, auranofin is a novel inhibitor of IRF3 functions and may represent a potential therapeutic option in diseases where IRF3 is deleterious.


Subject(s)
Apoptosis/drug effects , Auranofin/pharmacology , Autophagy/drug effects , Interferon Regulatory Factor-3/metabolism , Proteolysis/drug effects , Transcription, Genetic/drug effects , Animals , Humans , Interferon Regulatory Factor-3/genetics , Mice , RAW 264.7 Cells
9.
Viruses ; 13(4)2021 03 29.
Article in English | MEDLINE | ID: mdl-33805458

ABSTRACT

The immune system defends against invading pathogens through the rapid activation of innate immune signaling pathways. Interferon regulatory factor 3 (IRF3) is a key transcription factor activated in response to virus infection and is largely responsible for establishing an antiviral state in the infected host. Studies in Irf3-/- mice have demonstrated the absence of IRF3 imparts a high degree of susceptibility to a wide range of viral infections. Virus infection causes the activation of IRF3 to transcribe type-I interferon (e.g., IFNß), which is responsible for inducing the interferon-stimulated genes (ISGs), which act at specific stages to limit virus replication. In addition to its transcriptional function, IRF3 is also activated to trigger apoptosis of virus-infected cells, as a mechanism to restrict virus spread within the host, in a pathway called RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA). These dual functions of IRF3 work in concert to mediate protective immunity against virus infection. These two pathways are activated differentially by the posttranslational modifications (PTMs) of IRF3. Moreover, PTMs regulate not only IRF3 activation and function, but also protein stability. Consequently, many viruses utilize viral proteins or hijack cellular enzymes to inhibit IRF3 functions. This review will describe the PTMs that regulate IRF3's RIPA and transcriptional activities and use coronavirus as a model virus capable of antagonizing IRF3-mediated innate immune responses. A thorough understanding of the cellular control of IRF3 and the mechanisms that viruses use to subvert this system is critical for developing novel therapies for virus-induced pathologies.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Interferon Regulatory Factor-3/immunology , SARS-CoV-2/physiology , Animals , COVID-19/virology , Humans , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Protein Processing, Post-Translational , SARS-CoV-2/genetics
10.
J Biol Chem ; 295(20): 6811-6822, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32273341

ABSTRACT

The interferon system is the first line of defense against virus infection. Recently, using a high-throughput genetic screen of a human interferon-stimulated gene short-hairpin RNA library, we identified a viral restriction factor, TDRD7 (Tudor domain-containing 7). TDRD7 inhibits the paramyxo-/pneumoviruses (e.g. Sendai virus and respiratory syncytial virus) by interfering with the virus-induced cellular autophagy pathway, which these viruses use for their replication. Here, we report that TDRD7 is a viral restriction factor against herpes simplex virus (HSV-1). Using knockdown, knockout, and ectopic expression systems, we demonstrate the anti-HSV-1 activity of TDRD7 in multiple human and mouse cell types. TDRD7 inhibited the virus-activated AMP-activated protein kinase (AMPK), which was essential for HSV-1 replication. Genetic ablation or chemical inhibition of AMPK activity suppressed HSV-1 replication in multiple human and mouse cells. Mechanistically, HSV-1 replication after viral entry depended on AMPK but not on its function in autophagy. The antiviral activity of TDRD7 depended on its ability to inhibit virus-activated AMPK. In summary, our results indicate that the newly identified viral restriction factor TDRD7 inhibits AMPK and thereby blocks HSV-1 replication independently of the autophagy pathway. These findings suggest that AMPK inhibition represents a potential strategy to manage HSV-1 infections.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy , Herpesvirus 1, Human/physiology , Ribonucleoproteins/metabolism , Virus Replication , AMP-Activated Protein Kinases/genetics , Animals , Chlorocebus aethiops , HeLa Cells , Humans , Mice , Ribonucleoproteins/genetics , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...